首页> 外文OA文献 >The development and application of random matrix theory in adaptive signal processing in the sample deficient regime
【2h】

The development and application of random matrix theory in adaptive signal processing in the sample deficient regime

机译:随机矩阵理论在样本缺陷机制中自适应信号处理的发展与应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This thesis studies the problems associated with adaptive signal processing in the sample deficient regime using random matrix theory. The scenarios in which the sample deficient regime arises include, among others, the cases where the number of observations available in a period over which the channel can be approximated as time-invariant is limited (wireless communications), the number of available observations is limited by the measurement process (medical applications), or the number of unknown coefficients is large compared to the number of observations (modern sonar and radar systems). Random matrix theory, which studies how different encodings of eigenvalues and eigenvectors of a random matrix behave, provides suitable tools for analyzing how the statistics estimated from a limited data set behave with respect to their ensemble counterparts. The applications of adaptive signal processing considered in the thesis are (1) adaptive beamforming for spatial spectrum estimation, (2) tracking of time-varying channels and (3) equalization of time-varying communication channels. The thesis analyzes the performance of the considered adaptive processors when operating in the deficient sample support regime. In addition, it gains insights into behavior of different estimators based on the estimated second order statistics of the data originating from time-varying environment. Finally, it studies how to optimize the adaptive processors and algorithms so as to account for deficient sample support and improve the performance. In particular, random matrix quantities needed for the analysis are characterized in the first part. In the second part, the thesis studies the problem of regularization in the form of diagonal loading for two conventionally used spatial power spectrum estimators based on adaptive beamforming, and shows the asymptotic properties of the estimators, studies how the optimal diagonal loading behaves and compares the estimators on the grounds of performance and sensitivity to optimal diagonal loading. In the third part, the performance of the least squares based channel tracking algorithm is analyzed, and several practical insights are obtained. Finally, the performance of multi-channel decision feedback equalizers in time-varying channels is characterized, and insights concerning the optimal selection of the number of sensors, their separation and constituent filter lengths are presented.
机译:本文利用随机矩阵理论研究了样本不足状态下自适应信号处理的相关问题。出现样本不足状态的场景包括(其中包括)在信道可以近似为时不变的时期内可用观测数量有限(无线通信)的情况,可用观测数量有限通过测量过程(医学应用),或者未知系数的数量比观测值的数量(现代声纳和雷达系统)大。随机矩阵理论研究随机矩阵的特征值和特征向量的不同编码方式,为分析有限数据集所估计的统计量相对于整体集合的方式提供了合适的工具。本文所考虑的自适应信号处理的应用是:(1)用于空间频谱估计的自适应波束成形;(2)时变信道的跟踪;(3)时变通信信道的均衡。本文分析了在样本支持不足的情况下,自适应处理器的性能。另外,它还基于时变环境中数据的估计二阶统计量,深入了解了不同估计量的行为。最后,本文研究了如何优化自适应处理器和算法,以解决样本支持不足和性能提高的问题。特别地,在第一部分中表征了分析所需的随机矩阵数量。在第二部分中,论文研究了基于自适应波束形成的两个常规使用的空间功率谱估计器的对角线加载形式的正则化问题,并展示了估计器的渐近性质,研究了最佳对角线加载的行为并比较了基于性能和对最佳对角线载荷敏感度的估算器。在第三部分中,分析了基于最小二乘的信道跟踪算法的性能,并获得了一些实用的见解。最后,描述了时变通道中多通道决策反馈均衡器的性能,并提出了关于传感器数量,其分离度和组成滤波器长度的最佳选择的见解。

著录项

  • 作者

    Pajovic, Milutin;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号